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LEXTER TO THE EDITOR 

Planck distribution for a q-boson gas 

M A Martin-Delgadot 
Departamento de Fkica Tk6rica. Universidad Complutense de Madrid, Avda Com- 
plutense, Madrid 28040, Spain 

Received 16 Jub 1991 

AbslmeL The energy density distribulions for bosons obeying the qdefomatian of the 
harmonic millator algebra have been studied in order to obtain Same phyical insighl 
into the parameter q. The action of this parameter on the energy distributions resembles 
the action of the temperature parameter in the 'classical) Planck law ( q  = 1). 

Quantum deformation of Lie algebras and groups [1-4] has been shown to be deeply 
rooted in many problems of physical and mathematical interest, such as rational 
conformal field theories (RCFT) [S-8], exactly solvable statistical models [9], inverse 
scattering theory applied to integrable models in quantum field theories [lo], non- 
commutative geometry [3], knot theory in three dimensions, etc. In all these disparate 
areas of mathematical physics the I'ang-Baxter equation plays an essential role. More 
recently, Macfarlane Ill] and Biedenharn [12, 131 have constructed a realization of 
the simplest quantum group U q ( S U ( 2 ) )  using a q-analogue of the bosonic harmonic 
oscillator algebra. These q-oscillator techniques have been applied to quantum su- 
peralgebras in [ 14-16]. 

One of the most interesting issues is to study the physics behind the q-structures in 
order to get some insight into the physical implications of these deformations [17, 181. 
In this letter we take a small step in this direction by studying the modifications in the 
energy density distributions of a boson gas when these particles obey a q-deformation 
of the canonical commutation relations. 

The usual way to introduce the q-boson oscillators is through the Jordan- 
Schwinger construction of the classical algebra of SU(2) [ll-13]1. 

The quantum Lie algebra (or quantum group) U q ( S U ( 2 ) )  is a deformation of 
the universal enveloping algebra of SU(2)  which is endowed with a Hopf algebra 
structure [20, 1, 7,8]. The quantum algebra U q ( S U ( 2 ) )  can be characterized by giving 
its three generators J+, J - ,  J ,  together with the following defining relationships 
based on the Chevalley basis of S U ( 2 ) :  

[J , ,  J+1 = kJ* (1) 

t E-mail: Bitnet: WZl2 EMDUCMll 
t Recently, in [19] the q-deformed oscillator algebra is shown to be a quantum group itself with the 
supplied Hopf structure. 
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where q is the deformation parameter of the classical algebra SU(2).  It is a real 
number or  it has unit modulus in order to be compatible with the adjoint operation 
(JL = Jr) with the algebra structure (1),(2): 

q E W  q E e r  

q E S '  q E e  i e  . 

As usual, it is convenient to introduce q-numbers denoted by [x],: 

q= - q-= (I-1 

q - 9-' 
- x .  [XI, = (4) 

The algebra SU(2) is recovered from (1),(2) in the limit q + 1. 
The representation theory of the quantum group is quite similar to classical theory 

(when q is not a root of unity). Several authors [2 ,  21, 111 have proved that there 
exist irreps of U,(SU(Z) )  labelled with j = O , $ ,  1,. . . acting on a Hilbcrt space V J  
with basis vectors 

W q  - j  < m < j  (5)  

JZlj4, = mljm)q (6)  

as follows 

J*Mq = J ~ ~ T ~ l , [ ~ ~ m + l l q l ~ n f l ) , .  (7) 

From (7) we see that the usual numbers have turned into q-numbers. The irrep V J  
has dimension Z j  + 1. 

The q-boson oscillator realization of U, (SU(Z) )  (equations (I), (2)) is given by 
the following Jordan-Schwingcr map: 

(8) t 
2q 1, 

where ai ,  ,a!  ( i  = 1,2)  are two commuting copies of q-boson harmonic oscillators 
verifying the tollowing q-deformed commutation relationship [l l ,  121: 

25, = a 1, a I,? - Q : , Q 2 ,  J+ = ~~~a~~ t J-  = a t a 

Q,QJ - q- 'Qiaq = 9" (9) 

where N, is the Hermitian number operator defined by 

q" - q-" ,-I - N .  
4 - q - I  ai., = IN,], = 

Then the usual commutation relationships of Nq with a i , . ,  hold: 
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The highest weight representations of the q-Heisenberg algebra (9) are readily 
built up. Let IO), be the vacuum state such that ~,10),  = 0. Define the number 
states In), as usual: 

Then the irreps of the q-oscillator are 

NqI.), = 44, 

[n],! = [n],[n - 11, .. . [l],. (12) 

Let us note that the action of N, (13) is not q-deformed. The irreps (5) ofUq(SU(2)) 
are built up from the irreps (12) as tensorial products: 

Ijm), = l j  + 4, 8 l j  - 4,. (16) 

Once the Hilbert space of states In) is constructed we can go further and re- 
4 produce many of the usual computations in ordinary quantum mechanics in order to 

gain some insight into the effect produced by the q-deformation of the Heisenberg 
algebra and its representations. So, we can look for a q-Heisenberg principle [12, 
131. Then, let us introduce the position S, and momentum P, operators as follows: 

x, p&; 2mw + a , )  

Let A,X, and Amp, be the uncertainties (quadratic mean deviations) of these 
operators in the states In),, then [22] 

A,X,A,P, 2 fIq(nl[X'qr P,lln),I. (19) 

As i[P,,X,] = [.,,a:] = ti([N,+l],-[N,]),) the followingq-uncertaintyprinciple 
holds 

Here f i (n,q)  denotes an effective Planck constant that grows with n (q # l), i.e. it 
is an uncertainty principle with a constant f i ( n , q )  that is modified for each level n 
of the energy. Roughly speaking, it is as if the minimum uncertainty cell in the phase 
space increases as the energy increases. 
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Another way to obtain an insight into the physical implications of q-deforming the 
harmonic oscillator Hilbert space of states is to study its energy spectrum E , ( ¶ )  and 
energy density distribution U,(w, T) associated with a q-boson gas (a q-black-body 
or a 'q-sun'). 

Let us introduce the q-oscillator Hamiltonian If, 1121: 

(21) 
P2 mu2 

2m 
H ,  = -3- + T X :  

which can also be written in terms of the creation/annihilation operators or number 
operators: 

This Hamiltonian is diagonal in the base In), and its eigenvalues E : ( q )  are 

E:(q)  = !jL(In], + [n + 11,) '2 h w ( n  + 5) .  

H ,  = ~ ~ w ( Q : Q ,  + Q , Q ~ )  = f h w ( [ N , ] ,  + [ N ,  + 11,). (22) 

(23) 
1 

The superindex in EO,( q) means that the contribution from the zero-point energy of 
the oscillator has been taken into account. From (22) it follows that the energy levels 
are no longer uniformly spaced when q # 1. 

In order to study and make graphical representations of the energy densities 
U,(w, T) it is convenient, as usual, to redefine the origin of energies from the zero 
point energy onward in such a way that 

Now we introduce the partition function Z,(w, T) for a q-boson gas in the canonical 
ensemble: 

~ , ( q )  p w ( [ n l ,  + In + 11, - I) '2 twn. (24) 

m 

(25) 
1 .. 

z , ( ~ , T )  = C e - P E m ( q )  p -. 
"=O kB T 

Then we can define the average energy density for this gas in the usual way: 

U , ( W , T )  = - 
(26) 

(27) 

In the limit q i 1 the 'classical' Planck law is recovered: 
87r w 2 Phw 

= 7 (2,) 'BTeflnw - 1 '  

In order to study the energy density (25) when q # 1 it is convenient to use the 
following adimensional quantitics: 

(28) 
hW x3- 
kB T 
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We notice that these quantities are invariant under the change q -+ q-'. 

of modulus unity (36) the energy spectrum oscillates with n, namely 
The convergence of the series ~ ~ ( - 2 )  can be analysed as follows. When q = eie is 

- l1 

so that the general term of the series (28) does not tend to zero when n - a, and 
~ ~ ( - 2 )  diverges in this case. The same holds when q is real and negative. 

From now on we will concentrate on the case when q is real and positive i.e. 
q = er (3a). In this case the convergence of the series ~ ~ ( - 2 )  can be determined 
using the following properly of q-numbers: 

[n], > n V n , q  = er (32) 

then exp (--2 [ $( [n + 11, + [n], - l)] } < e-%" from which the following bound 
for the q-boson partition function in terms of the classical partition function (q = 1) 
holds: 

z,(z) 6 z1(-2) = 1/(1 - e - " ) .  (33) 

We proceed now to study the regime of great energies and/or low temperatures, 
i.e. 2 = hw/k ,T >> 1. Then we can approximate the series in .,(I) by the first two 
terms: 

"1+exp(-$-2([2]q+[1]q-1)} =1+exp(-;-2([2Jq)} = z q  W ( I )  ZJ.) - (34) 

and when inserted in (30), within this approximation, we obtain the q-extension of 
Wien law for the energy density U$(.): 

U$(.) rz z3cosh re-2Coshr (35) 

where we have used [2], = $ ( q  + q - l )  = cosh T. Notice that the limit q -+ 1 (or 
T -, 0 )  again reproduces the classical result of the Wien law. 

Figure 1 illustrates the energy density U$( -2) for several values of the deformation 
parameter. Although expression (32) is only valid when z >> 1, we have drawn the 
curves for all z E [ O , c o )  as usual. In this way we see how the maximum zmax of the 
energy distribution decreases as q grows (or decreases as well, due to the symmetry 
q -+ q-' in the distributions). In fact, it is easy to obtain the following extension of 
the Wien shift law: 

xmaX = 3/ cosh r 
or equivalently 

3 
hcosh r k,T. Wmsx = 

(36) 

(37) 

Let us notice that the effect on wmaX when the parameter q grows is opposed to the 
one produced by an increment in temperature, but they both produce an analogous effect 
when they decrease. 
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x 

Figure 1. Energy density culyes u y  (z) (35) in the Wien approximation for different 
values of the deformation parameler 7 = In q. 

It is also worthwhile to notice in figure 1 how lhe total energy U? (area) of the 
q-baron gas decreases as the deformation parameter q = eT increases (or decreases as 
well, due lo the ymmetty q - q-'). In fact, the q-Stefan law can be readily obtained 
in the Wien approximation by integrating (34), namely 

T4 6 ki W T  - 
( ) - n2(hcosh T C ) ~  

and the decrease in the Stefan-Boltzmann constant with q(s )  is manifest. 

deformation in this approximation by means of an effective Planck constant ti,: 
From (36) and (37) we see that it is possible to understand the effect of the 

ti, = hcosh T (39) 

which reduces to ti when T - 0. 
The analysis of the q-Planck law (25) Cor any value of z is more cumbersome due 

to the nature of the energy levels E,(q)  (23) when q # 1. From studying the Wien 
approximation and formula (32) a similar behaviour for the energy density distribution 
(29) can be expected. In fact, a numerical analysis of U , ( . )  is shown in figure 2 
for the same T values as in the Wien distributions U?(.) (figure 1). Both families 
of curves are in qualitative agreement and even in quantitative agreement except 
when z approaches 0 where the Wien law fails. Thus we arrive at the conclusion 
that the parameter q qualitatively acts on the energy distributions as the temperature 
parameter does in the 'classical' Planck law, but with the difference that any variation 
of q always produces a decrease in the total energy while the temperature may 
decrease or increase the total energy according to the temperature variation. 

I would like to thank J Ramirez Mittelbrunn, G Sierra, L A Ibort and L Martinez 
for useful discussions on quantum groups and related topics. I am indebted to M A 
Martinez Rubio for computational assistance. 
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x 

Figure 2. Numerical analpis of energy density C U N ~ S  u7(z) (30) for dilferenl values of 
the deformation parameter 7 = In 9. 
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